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PRECIPITATION OF A CLOUD OF HEATED PARTICLES ON
A HORIZONTAL PLANE

G. M. Makhviladze and 0. I. Melikhov UDC 532.529:536.46

The precipitation of a cloud of heated monodisperse particles in a field of exter-
nal force is numerically investigated.

The nature of the motion of a cloud of particles in an infinite medium under the action
of an external force (gravity) depends on the degree of hydrodynamic interaction between the
particles, which is mediated by the carrier phase [1-3].. If the particle concentration in
the cloud is low, each particle moves like a solitary particle, independently of the others
(the "filtration" regime). If the particle concentration is sufficiently high this regime
gives way to the "entrainment" regime, where the medium between the particles is involved in
the motion; the assembly of particles moves at a speed that exceeds the speed of fall of a
single particle. '

In [4, 5] the motion and precipitation of a cloud possessing plane symmetry (in a direc~
tion perpendicular to the action of the external force one of the dimensions of the cloud was
much greater than the other) were examined. A numerical solution of the unsteady two-dimen-
sional equations of motion of a two-phase medium showed that the interaction of the cloud with
the precipitation surface depends significantly on the regime of motion. In the filtration
regime all the particles move in straight trajectories, perpendicular to the precipitation
plane, and fall on this plane in the region of initial projection of the cloud; the final dis-
tribution of the precipitated particles does not depend on the initial height of the cloud.
Entrainment motion of the cloud produces a large-scale vortical flow of the carrier medium in
the form of two symmetric cylindrical eddies, which increase in size (the analog of this solu-
tion in the case .of axial symmetry is a vortical ring — a torus). In the plane of symmetry
the gas moves downward in the direction of the external force and on the periphery it rises.
The particles are involved in this motion and become concentrated in the cores of the eddies;
thus, most of the particles move in directions perpendicular to that of the external force.
This effect becomes more pronounced as the cloud approaches the precipitation plane owing to
the spreading of the gas along it, which causes additional sideways transport of particles.
This leads to precipitation of some particles at great distances from the plane of symmetry,
exceeding the initial radius of the cloud. : - .

In [4, 5] the precipitation process was considered in the isothermal case, where the gas
and particle temperatures are equal. In:this paper we examine, in a plane formulation, the
precipitation of a cloud of particles in the nonisothermal case, where the initial particle
temperature exceeds the ‘temperature of the surrounding gas. At the initial time a cold gas,
in static equilibrium in a field of external force, contains a motionless cloud of heated sol-
id or liquid spherical particles (a monodisperse aerosol). In describing the motion of the
disperse medium we adopt the usual assumptions of mechanics of heterogeneous media [6}, and
regard the gas and particles as two interpenetrating and interacting continua. We consider
systems in which the volume fraction of the particles and the ratio of the true gas and par-
ticle densities are small; collisions, breakup, and evaporation of the particles are insignif-
icant; viscous dlSSlpatlon of energy is negligible; the temperature is aSSumed constant through-
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out the volume of the particle; the precipitation surface is thermally insulated; the dynamic
viscosity and thermal conductivity are constant.

When the above assumptions are made the plane unsteady motion of the two-phase medium in
a Cartesian coordinate system (x, V), whose origin is under the centroid of the cloud and
whose v axis is normal to the cloud and opposite to the external force vector, is represented
by the following equations:
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Problem (1)-(5) is written in dimensionless variables; the characteristic length, veloc-
ity, time, density, temperature, pressure, and particle concentration scales are R, Vig} /E7§,
P10y Tos P10RaTo, and no. The subscript indicates the phase: i = 1 is the gas, i = 2 is the
particles. In the calculations we used the following values of parameters: M2 = 0.75.107%,
Pr=1, vy =1.4, v, =1, € = 107%, Re = 29.05, § = 3.3-107°%-1.4-107%, @2 = 107°-10"%, H = 1.5-
10, Re; = 6.5-10°-6 = 214.5-910, 8, = 0-5. HereRe and Reg are assigned independently; the "ex-
ternal” Reynolds number is based on the effective turbulent viscosity, and the flow over the
particle is assumed to be laminar. The equations of motion of the gas (1) were integrated by
the method in [7, 8] and the particle equations (2) were integrated by a longitudinal—trans-
verse scheme [9]. The method of solving problems of this type is described in [4].

At an early stage of the process the temperatures level out due to interphase heat trans-
fer: The gas between the heated particles is heated by conduction and is set in motion. As
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Fig. 1. Evolution of a cloud of heated particles (H = 5, 6p = 2,
§ = 6.67-10"%, a3 = 107®); then=0.11lines in the region x > 0 are
shown: the dashed line is t = 03 1) t = 0.55; 2) 1.84; 3) 5.52; 4)
9.2; the gas speed distribution at t = 3.7 in the region x < 0 is
shown.

Fig. 2. Instantaneous particle distributions on precipitation
plane, H = 3.2, 8, = 2, § = 6.67:107%, af = 107%: 1) t = 7.4; 2)
9.2; 3) 11.1: 4) 12.9; 5) [coincides with Ng(x)] 18.4; dashed line —

Ng(x) at 8, = 0.

Fig. 3. Final particle distributions on precipitation plane in re-

lation to initial temperature difference, H = 3.2, § = 6.67-107%,
as = 1073%; 1) ep = 0; 2) 0.5; 3) 1; 4) 1.5; 5) 2.

a result the dynamics of the settling cloud and the precipitation characteristics differ sig-
nificantly from the isothermal case. These new effects arise if the cloud moves in the en-
trainment regime, which is considered below. If the particle concentration is sufficiently
low (filtration regime) the motion of the cloud resembles the isothermal case — the heating
of the gas is insignificant.

The effect of thermal processes on the evolution of a cloud of particles settling on a
flat surface is shown in Fig. 1 (the picture is completely symmetric relative to the plane x =
0). The gas, heated by the thermal energy stored in the particles, expands in all directions
in the (x, y) plane from the center of the cloud and carries the particles with it. This
leads to a sharp increase in size (spread) of the cloud (curve 1) and to a reduction of the
mean particle concentration. The relative increase in cloud radius in this case is o = 1.21.
In the initial stage of the process the particles descend under the action of the external
force and are simultaneously transported by the expanding gas. The characteristic time of
temperature equalization, defined as the time for reduction of the difference in the maximum
(in space) temperatures of the two phases to o.1ep, is t; = 0.6, After this time the expan-
sion of the gas ceases (curve 1) and the particles move only downward (curve 2).

Large-scale (about the same size as the cloud) vortical motions of different physical
nature then begin to form in the gas. At the bottom of the cloud, as in the isothermal case,

a symmetric two-eddy flow, due to precipitation of the particles, is formed. At the top of
the cloud, the development of thermal convection in the field of external force, as in the
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Fig. 4. Scattering coefficient as
function of: 1) temperature (H =

3.2, § = 6.67-107%, a3 = 1077%); 2)
initial cloud height (6, = 2, § =

6.67.107%, a2 = 107%); 3) particle
diameter (H = 3.2, 6, = 1.5, as =

1073); 4) particle volume fraction
(H=23.2,6,=2,8=6.67-10"%);

the dashed lines are the corre-

sponding curves for ep = 0.
rising of hot volumes of gas (''thermals') [10], gives rise to another two symmetric eddies,
which we will call "thermal" eddies, since they appear only in the nonisothermal case. The
heated gas near the plane of symmetry at the top of the cloud moves upward. The time of onset
of thermal convection can be estimated if the size of the region occupied by the heated gas
(20R) and its characteristic speed of ascent [20Rg(<6>—1)1% are known [10]. In dimension-
less units t} = [26/(<6>—17% = 1.55 (0 = 1.21, <6> = 2), which gives for the time of onset
of convection from the start of the process te =ty t té = 2.15. Large-scale vortical motion
due to the fall of the particles develops in a time tg, which is approximately equal to the
time in which the cloud falls through a distance equal to its radius. Estimating the speed
of the cloud as the steady speed of fall of a single particle w = 0.31 [w is determined by in-
tegrating the equation of motion of a single particle with due allowance for the relation
cd(Rep) from (3); the speed attains a steady value in time t = 0.54], we find tg ~ 1/w = 3.2.

The values of t, and tg agree with the results of calculation.

The formation of the four-eddy configuration composed of two ascending thermal eddies and
two descending precipitation eddies is shown on the left-hand side of Fig, 1. The upward con-
vective movement of the gas prevents the fall of the particles, the spread of the cloud, and
sideways transport of the particles, with the result that the lines of equal conc¢entration are
produced in the vertical direction (curves 3 and 4). With the passage of time the thermal ed-
dies leave the investigated region, and all the particles settle on the horizontal plane.

The special features of the motion of the cloud due to the initial temperature difference
between the phases lead to a change in the instantaneous and final particle surface-concentra-
tion distributions, which are given by the relations:

{
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In the isothermal case these distributions are characterized by two maxima, situated at points
equidistant from the plane x = 0, and a minimum in the plane of symmetry, which can be attrib-
uted to the nature of the motion of the cloud in the entrainment regime. As Fig. 2 shows,
when 9, > 0 the precipitation curves have initially the same shape as in the isothermal case.
Subsequently, however, because of the vertical extension of the cloud, due to the development
of thermal convection in the gas, the particles begin to settle mainly in the region near x =
0; the maximum of precipitated particles is shifted to the plane of symmetry.

The effect of nonisothermality on the final particle surface-~concentration distributions
is shown in Fig. 3. The greater the initial temperature difference, the more intense the con-
vective flow of gas that leads to precipitation of particles near the plane of symmetry. In
the isothermal case and for small 6, we obtain two-humped final distributions (curves 1-3 cor-
respond to them), whereas an increase in ep leads to a single concentration maximum in the
plane of symmetry (curves 4 and 5).
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A quantitative index of the precipitation process is the scattering coefficient m of the
cloud on the precipitation plane, which is equal to the fraction of particles precipitated on
the plane outside the initial projection of the cloud [4, 5]. The changes in the scattering
coefficient in the nonisothermal case are due to two effects affecting the movements of the
carrier medium; the spread of the cloud and the onset of thermal convection. The former pro-
motes scattering of the cloud, whereas the latter causes the particles to concentrate near
the axis of symmetry.

We compare the plots of scattering coefficient against initial cloud height, particle
diameter, initial temperature drop, and particle volume fraction in the isothermal and noniso-
thermal cases (Fig. 4).

As Fig., 3 indicates, the scattering coefficient should decrease with increase in ep. The
corresponding relation is shown by curve 1 in Fig. 4. As the cloud ascends its scattering in-
creases (curves 2 and 2'), since with increase in H the precipitation eddies increase in size
as they approach the plane. Reduction of the particle diameter with the other parameters
fixed leads to their entrainment in the vortical motion and to scattering of the particles;
the coefficient m increases in this case (curves 3 and 3'). For heated particles scattering
for all H and & is less than for cold particles. At large § curves 3 and 3' will intersect
in the region m = 0 owing to transition to the filtration regime.

In the isothermal case when the initial particle concentration is low the filtration re-
gime occurs (curve 4') and almost all the particles are precipitated in the region of the ini-
tial projection of the cloud on the precipitation plane., When the volume fraction of the dis-
perse phase is large gasdynamic interaction between the particles increases, there is a tran-
sition to the entrainment regime, and the scattering coefficient increases. In the case of
large a3 the cloud reaches the surface so quickly that the developing transverse motions of
the carrier medium do not manage to transport the particles over great distances, and m de-
creases.

As distinct from the isothermal case, when the initial temperature of the particles is
sufficiently high the function m(a3) is monotonic in. the investigated range of parameters
(curve 4). 1Its increase at values of a3 corresponding to the fall of the isothermal curve is
due to the great spread of the cloud, which increases with increase in total thermal energy
of the disperse phase in direct proportion to a3. We note that when «2 > 3.5-107% the noniso-
thermal scattering coefficient exceeds the isothermal coefficient, as distinct from the other
relations shown in Fig. 4. This can be attributed to the greater effect of spread of the cloud
on the scattering coefficient in comparison with the effect of thermal eddies at high particle
concentrations.

The dynamics of the motion of the carrier medium are greatly altered when the particle
concentration is high, since the precipitation and thermal convection processes are separated
in time. The speed of fall of the cloud under the action of the external force is high owing
to the great gasdynamic interaction between the particles and, hence, the particles are pre-
cipitated on the plane y = 0 before the onset of thermal convection. The two symmetric pre-
cipitation eddies formed when the cloud falls exist close to the precipitation surface for a
long time after the precipitation of the particles. Since the particle concentration and,
hence, the gas temperature are highest at the cores of the descending eddies, regions of gas
with increased temperature are formed at sites of their interaction with the plane after pre-
cipitation of the particles. In these regions thermal convection occurs: The hot gas rises,
causing the formation of symmetric thermal eddies on the right (x > 0) and left (x < 0) of the
precipitation eddies. The ascending thermal eddies increase in size, their intensity in-
creases, and the precipitation eddies gradually decay. As an example, we cite some results
of calculation with the parameters of curve 4 and @3 = 0.0l: The time for complete precipi-
tation of the particles is 2.5, the time for onset of thermal convection is approximately four
times greater, and the centers of the hot-gas regions after precipitation of the particles
lie at x =~ *4.4, ’

We have considered the situation where the intensity of the thermal eddies is not suffi-
cient for the abstraction of a considerable number of particles. Calculations show that for
fairly high o and ep the vertical extension of the cloud terminates in its breakup (division)

into two smaller clouds, one of which moves downward towards the precipitation plane, while
the other is carried upwards by the flow of hot gas. We can expect that the behavior of the
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precipitation curves and the scattering coefficient in this case will differ significantly
from the relations shown in Figs. 2-4., The precipitation of the particles will take place in
two stages: first from the bottom cloud and then from the upper cloud (after it has cooled).

We note in conclusion that the features of precipitation of a cloud of hot particles ex-
amined in this paper are of interest from the viewpoint of the most diverse effects (aerosol
clouds accompanying the eruption of volcanos, clouds of combustion products in fires, clouds
of waste gases of industrial enterprises and in chemical reactors). The results obtained can
be used to describe the aerodynamics of a cloud of slowly burning (combustion time less than
the precipitation time) particles above a horizontal plane.

NOTATION

t, time; %, v, dimensionless coordinates with unit vectors i and j; p, U, 8, dimension-
less density, velocity, and temperature; P, dimensionless gas pressure; f, force of interphase
interaction; q, rate of interphase heat transfer; R, initial radius of cloud; H, dimensionless
initial height of cloud; g, acceleration of external force; pio, gas density at precipitation
plane at initial time; T, and TP’ initial gas and particle temperatures; 6p = (Tp — To)/To,
dimensionless initial temperature difference between phases; Ro, gas constant; ne, maximum
initial particle concentration; n, dimensionless particle concentration; ng, particle concen-
tration distribution on precipitation plane; Ng,particle concentration distribution on preci-
pitation plane when t - «j di/dt, substance derivatives; ps, true particle density; a,,
volume fraction of particles; as, maximum volume fraction of particles at initial time; 4,
particle diameter; cy and cp, specific heats of gas at constant volume and pressure; n, dy-
namic viscosity:; A, thermal conductivity; c., specific heat of particles; cg, resistance
coefficient; M, Re, Pr, Nu — Mach, Reynolds, Prandtl, and Nusselt numbers; Rep, variable
Reynolds number of particle; Reg, Reynolds number of particle based on characteristic con-
vective velocity; ¢, ratio of true densities of gas and particles; &, ratio of particle diam-—
eter to cloud radius; w, scattering coefficlent of cloud on precipitation surface; ¢, rel~
active increase in radius of cloud due to its spread; < Q>, dimensionless mean temperature
after spread of cloud.
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